skip to main content


Search for: All records

Creators/Authors contains: "Popping, Gergö"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Forward-modeling observables from galaxy simulations enables direct comparisons between theory and observations. To generate synthetic spectral energy distributions (SEDs) that include dust absorption, re-emission, and scattering, Monte Carlo radiative transfer is often used in post-processing on a galaxy-by-galaxy basis. However, this is computationally expensive, especially if one wants to make predictions for suites of many cosmological simulations. To alleviate this computational burden, we have developed a radiative transfer emulator using an artificial neural network (ANN), ANNgelina, that can reliably predict SEDs of simulated galaxies using a small number of integrated properties of the simulated galaxies: star formation rate, stellar and dust masses, and mass-weighted metallicities of all star particles and of only star particles with age <10 Myr. Here, we present the methodology and quantify the accuracy of the predictions. We train the ANN on SEDs computed for galaxies from the IllustrisTNG project’s TNG50 cosmological magnetohydrodynamical simulation. ANNgelina is able to predict the SEDs of TNG50 galaxies in the ultraviolet (UV) to millimetre regime with a typical median absolute error of ∼7 per cent. The prediction error is the greatest in the UV, possibly due to the viewing-angle dependence being greatest in this wavelength regime. Our results demonstrate that our ANN-based emulator is a promising computationally inexpensive alternative for forward-modeling galaxy SEDs from cosmological simulations.

     
    more » « less
  2. ABSTRACT

    At fixed galaxy stellar mass, there is a clear observational connection between structural asymmetry and offset from the star-forming main sequence, ΔSFMS. Herein, we use the TNG50 simulation to investigate the relative roles of major mergers (stellar mass ratios μ ≥ 0.25), minor (0.1 ≤ μ < 0.25), and mini mergers (0.01 ≤ μ < 0.1) in driving this connection amongst star-forming galaxies (SFGs). We use dust radiative transfer post-processing with SKIRT to make a large, public collection of synthetic Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) images of simulated IllustrisTNG (TNG) galaxies over 0.1 ≤ z ≤ 0.7 with log (M⋆/M⊙) ≥ 9 (∼750 k images). Using their instantaneous star formation rates (SFRs), known merger histories/forecasts, and HSC-SSP asymmetries, we show (1) that TNG50 SFGs qualitatively reproduce the observed trend between ΔSFMS and asymmetry and (2) a strikingly similar trend emerges between ΔSFMS and the time-to-coalescence for mini mergers. Controlling for redshift, stellar mass, environment, and gas fraction, we show that individual mini merger events yield small enhancements in SFRs and asymmetries that are sustained on long time-scales (at least ∼3 Gyr after coalescence, on average) – in contrast to major/minor merger remnants which peak at much greater amplitudes but are consistent with controls only ∼1 Gyr after coalescence. Integrating the boosts in SFRs and asymmetries driven by μ ≥ 0.01 mergers since z = 0.7 in TNG50 SFGs, we show that mini mergers are responsible for (i) 55 per cent of all merger-driven star formation and (ii) 70 per cent of merger-driven asymmetric structure. Due to their relative frequency and prolonged boost time-scales, mini mergers dominate over their minor and major counterparts in driving star formation and asymmetry in SFGs.

     
    more » « less
  3. Aims. We aim to quantify the relation between the dust-to-gas mass ratio (DTG) and gas-phase metallicity of z  = 2.1 − 2.5 luminous galaxies and contrast this high-redshift relation against analogous constraints at z  = 0. Methods. We present a sample of ten star-forming main-sequence galaxies in the redshift range 2.1 <  z  < 2.5 with rest-optical emission-line information available from the MOSDEF survey and with ALMA 1.2 millimetre and CO J  = 3 − 2 follow-up observations. The galaxies have stellar masses ranging from 10 10.3 to 10 10.6   M ⊙ and cover a range in star-formation rate from 35 to 145 M ⊙ yr −1 . We calculated the gas-phase oxygen abundance of these galaxies from rest-optical nebular emission lines (8.4 < 12 + log(O/H) < 8.8, corresponding to 0.5−1.25 Z ⊙ ). We estimated the dust and H 2 masses of the galaxies (using a metallicity-dependent CO-to-H 2 conversion factor) from the 1.2 mm and CO J  = 3 − 2 observations, respectively, from which we estimated a DTG. Results. We find that the galaxies in this sample follow the trends already observed between CO line luminosity and dust-continuum luminosity from z  = 0 to z  = 3, extending such trends to fainter galaxies at 2.1 <  z  < 2.5 than observed to date. We find no second-order metallicity dependence in the CO – dust-continuum luminosity relation for the galaxies presented in this work. The DTGs of main-sequence galaxies at 2.1 <  z  < 2.5 are consistent with an increase in the DTG with gas-phase metallicity. The metallicity dependence of the DTG is driven by the metallicity dependence of the CO-to-H 2 conversion factor. Galaxies at z  = 2.1 − 2.5 are furthermore consistent with the DTG-metallicity relation found at z  = 0 (i.e. with no significant evolution), providing relevant constraints for galaxy formation models. These results furthermore imply that the metallicity of galaxies should be taken into account when estimating cold-gas masses from dust-continuum emission, which is especially relevant when studying metal-poor low-mass or high-redshift galaxies. 
    more » « less
  4. Abstract We present observations of CO(3−2) in 13 main-sequence z = 2.0–2.5 star-forming galaxies at log ( M * / M ⊙ ) = 10.2 – 10.6 that span a wide range in metallicity (O/H) based on rest-optical spectroscopy. We find that L CO ( 3 − 2 ) ′ /SFR decreases with decreasing metallicity, implying that the CO luminosity per unit gas mass is lower in low-metallicity galaxies at z ∼ 2. We constrain the CO-to-H 2 conversion factor ( α CO ) and find that α CO inversely correlates with metallicity at z ∼ 2. We derive molecular gas masses ( M mol ) and characterize the relations among M * , SFR, M mol , and metallicity. At z ∼ 2, M mol increases and the molecular gas fraction ( M mol / M * ) decreases with increasing M * , with a significant secondary dependence on SFR. Galaxies at z ∼ 2 lie on a near-linear molecular KS law that is well-described by a constant depletion time of 700 Myr. We find that the scatter about the mean SFR− M * , O/H− M * , and M mol − M * relations is correlated such that, at fixed M * , z ∼ 2 galaxies with larger M mol have higher SFR and lower O/H. We thus confirm the existence of a fundamental metallicity relation at z ∼ 2, where O/H is inversely correlated with both SFR and M mol at fixed M * . These results suggest that the scatter of the z ∼ 2 star-forming main sequence, mass–metallicity relation, and M mol – M * relation are primarily driven by stochastic variations in gas inflow rates. We place constraints on the mass loading of galactic outflows and perform a metal budget analysis, finding that massive z ∼ 2 star-forming galaxies retain only 30% of metals produced, implying that a large mass of metals resides in the circumgalactic medium. 
    more » « less
  5. ABSTRACT

    We present the first detection of the [N ii] 122 $\mu$m and [O iii] 52 $\mu$m lines for a reionization-epoch galaxy. Based on these lines and previous [C ii] 158 $\mu$m and [O iii] 88 $\mu$m measurements, using two different radiative transfer models of the interstellar medium, we estimate an upper limit on electron density of ≲500 cm−3 and an approximate gas-phase metallicity of Z/Z⊙ ∼ 1.1 ± 0.2 for A1689-zD1, a gravitationally lensed dusty galaxy at z = 7.133. Other measurements or indicators of metallicity so far in galaxy interstellar media at z ≳ 6 are typically an order of magnitude lower than this. The unusually high metallicity makes A1689-zD1 inconsistent with the fundamental metallicity relation, although there is likely significant dust obscuration of the stellar mass, which may partly resolve the inconsistency. Given a solar metallicity, the dust-to-metals ratio is a factor of several lower than expected, hinting that galaxies beyond z ∼ 7 may have lower dust formation efficiency. Finally, the inferred nitrogen enrichment compared to oxygen, on which the metallicity measurement depends, indicates that star formation in the system is older than about 250 Myr, pushing the beginnings of this galaxy to z > 10.

     
    more » « less
  6. Abstract

    One of the most fundamental baryonic matter components of galaxies is the neutral atomic hydrogen (Hi). At low redshifts, this component can be traced directly through the 21 cm transition, but to infer the Higas content of the most distant galaxies, a viable tracer is needed. We here investigate the fidelity of the fine-structure transition of the (2P3/22P1/3) transition of singly ionized carbon Ciiat 158μm as a proxy for Hiin a set simulated galaxies atz≈ 6, following the work by Heintz et al. We select 11,125 star-forming galaxies from thesimbasimulations, with far-infrared line emissions postprocessed and modeled within the Sigameframework. We find a strong connection between Ciiand Hi, with the relation between this Cii-to-Hirelation (β[CII]) being anticorrelated with the gas-phase metallicity of the simulated galaxies. We further use these simulations to make predictions for the total baryonic matter content of galaxies atz≈ 6, and specifically the Higas mass fraction. We find mean values ofMH I/M= 1.4 andMH I/Mbar,tot= 0.45. These results provide strong evidence for Hibeing the dominant baryonic matter component by mass in galaxies atz≈ 6.

     
    more » « less
  7. Abstract Submillimeter emission lines produced by the interstellar medium (ISM) are strong tracers of star formation and are some of the main targets of line intensity mapping (LIM) surveys. In this work we present an empirical multiline emission model that simultaneously covers the mean, scatter, and correlations of [C ii ], CO J = 1–0 to J = 5–4, and [C i ] lines in the redshift range 1 ≤ z ≤ 9. We assume that the galaxy ISM line emission luminosity versus halo mass relations can be described by double power laws with redshift-dependent lognormal scatter. The model parameters are then derived by fitting to the state-of-the-art semianalytic simulation results that have successfully reproduced multiple submillimeter line observations at 0 ≤ z ≲ 6. We cross-check the line emission statistics predicted by the semianalytic simulation and our empirical model, finding that at z ≥ 1 our model reproduces the simulated line intensities with fractional error less than about 10%. The fractional difference is less than 25% for the power spectra. Grounded on physically motivated and self-consistent galaxy simulations, this computationally efficient model will be helpful in forecasting ISM emission-line statistics for upcoming LIM surveys. 
    more » « less
  8. Abstract The Millimeter-wave Intensity Mapping Experiment (mmIME) recently reported a detection of excess spatial fluctuations at a wavelength of 3 mm, which can be attributed to unresolved emission of several CO rotational transitions between z ∼ 1 and 5. We study the implications of these data for the high-redshift interstellar medium using a suite of state-of-the-art semianalytic simulations that have successfully reproduced many other submillimeter line observations across the relevant redshift range. We find that the semianalytic predictions are mildly in tension with the mmIME result, with a predicted CO power ∼3.5 σ below what was observed. We explore some simple modifications to the models that could resolve this tension. Increasing the molecular gas abundance at the relevant redshifts to ∼10 8 M ⊙ Mpc −3 , a value well above that obtained from directly imaged sources, would resolve the discrepancy, as would assuming a CO–H 2 conversion factor α CO of ∼1.5 M ⊙ K −1 (km s −1 ) −1 pc 2 , a value somewhat lower than is commonly assumed. We go on to demonstrate that these conclusions are quite sensitive to the detailed assumptions of our simulations, highlighting the need for more careful modeling efforts as more intensity mapping data become available. 
    more » « less
  9. Abstract

    Detecting the line-intensity mapping (LIM) signal from the galaxies of the epoch of reionization is an emerging tool to constrain their role in reionization. Ongoing and upcoming experiments target the signal fluctuations across the sky to reveal statistical and astrophysical properties of these galaxies via signal statistics, e.g. the power spectrum. Here, we revisit the [C ii]$_{158 \, \mu \text{m}}$ LIM power spectrum under non-uniform line–luminosity scatter, which has a halo-mass variation of statistical properties. Line–luminosity scatter from a cosmological hydrodynamic and radiative transfer simulation of galaxies at $z$ = 6 is considered in this study. We test the robustness of different model frameworks that interpret the impact of the line-luminosity scatter on the signal statistics. We use a simple power-law model to fit the scatter and demonstrate that the mean luminosity–halo mass correlation fit cannot preserve the mean intensity of the LIM signal (hence the clustering power spectrum) under non-uniform scatter. In our case, the mean intensity changes by ∼48 per cent compared to the mean correlation fit in contrast to the general case with semi-analytical scatter. However, we find that the prediction for the mean intensity from the most-probable fit can be modelled robustly, considering the generalized and more realistic non-uniform scatter. We also explore the possibility of diminishing luminosity bias under non-uniform scatter, affecting the clustering power spectrum, although this phenomenon might not be statistically significant. Therefore, we should adopt appropriate approaches that can consistently interpret the LIM power spectrum from observations.

     
    more » « less
  10. ABSTRACT

    Wide, deep, blind continuum surveys at submillimetre/millimetre (submm/mm) wavelengths are required to provide a full inventory of the dusty, distant Universe. However, conducting such surveys to the necessary depth, with sub-arcsec angular resolution, is prohibitively time-consuming, even for the most advanced submm/mm telescopes. Here, we report the most recent results from the ALMACAL project, which exploits the ‘free’ calibration data from the Atacama Large Millimetre/submillimetre Array (ALMA) to map the lines of sight towards and beyond the ALMA calibrators. ALMACAL has now covered 1001 calibrators, with a total sky coverage around 0.3 deg2, distributed across the sky accessible from the Atacama desert, and has accumulated more than 1000 h of integration. The depth reached by combining multiple visits to each field makes ALMACAL capable of searching for faint, dusty, star-forming galaxies (DSFGs), with detections at multiple frequencies to constrain the emission mechanism. Based on the most up-to-date ALMACAL data base, we report the detection of 186 DSFGs with flux densities down to S870 µm ∼ 0.2 mJy, comparable with existing ALMA large surveys but less susceptible to cosmic variance. We report the number counts at five wavelengths between 870 μm and 3 mm, in ALMA bands 3, 4, 5, 6, and 7, providing a benchmark for models of galaxy formation and evolution. By integrating the observed number counts and the best-fitting functions, we also present the resolved fraction of the cosmic infrared background (CIB) and the CIB spectral shape. Combining existing surveys, ALMA has currently resolved about half of the CIB in the submm/mm regime.

     
    more » « less